首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gluino reach and mass extraction at the LHC in radiatively-driven natural SUSY
Authors:Howard Baer  Vernon Barger  James S Gainer  Peisi Huang  Michael Savoy  Dibyashree Sengupta  Xerxes Tata
Institution:1.Department of Physics and Astronomy,University of Oklahoma,Norman,USA;2.Department of Physics,University of Wisconsin,Madison,USA;3.Department of Physics and Astronomy,University of Hawaii,Honolulu,USA;4.Enrico Fermi Institute,University of Chicago,Chicago,USA;5.HEP Division, Argonne National Laboratory,Argonne,USA;6.Mitchell Institute for Fundamental Physics and Astronomy,Texas A&M University,College Station,USA
Abstract:Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the 10% level while respecting LHC sparticle and Higgs mass constraints. Gluino and top-squark masses can range up to several TeV (with other squarks even heavier) but a set of light Higgsinos are required with mass not too far above \(m_h\sim 125\) GeV. Within the RNS framework, gluinos dominantly decay via \(\tilde{g}\rightarrow t\tilde{t}_1^{*},\ \bar{t}\tilde{t}_1 \rightarrow t\bar{t}\widetilde{Z}_{1,2}\) or \(t\bar{b}\widetilde{W}_1^-+c.c.\), where the decay products of the higgsino-like \(\widetilde{W}_1\) and \(\widetilde{Z}_2\) are very soft. Gluino pair production is, therefore, signaled by events with up to four hard b-jets and large \(\not \!\!{E_T}\). We devise a set of cuts to isolate a relatively pure gluino sample at the (high-luminosity) LHC and show that in the RNS model with very heavy squarks, the gluino signal will be accessible for \(m_{\tilde{g}} < 2400 \ (2800)\) GeV for an integrated luminosity of 300 (3000) fb\(^{-1}\). We also show that the measurement of the rate of gluino events in the clean sample mentioned above allows for a determination of \(m_{\tilde{g}}\) with a statistical precision of 2–5% (depending on the integrated luminosity and the gluino mass) over the range of gluino masses where a 5\(\sigma \) discovery is possible at the LHC.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号