首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Likelihood analysis of the minimal AMSB model
Authors:E Bagnaschi  M Borsato  K Sakurai  O Buchmueller  R Cavanaugh  V Chobanova  M Citron  J C Costa  A De Roeck  M J Dolan  J R Ellis  H Flächer  S Heinemeyer  G Isidori  M Lucio  F Luo  D Martínez Santos  K A Olive  A Richards  G Weiglein
Institution:1.DESY,Hamburg,Germany;2.Universidade de Santiago de Compostela,Santiago de Compostela,Spain;3.Science Laboratories, Department of Physics,Institute for Particle Physics Phenomenology, University of Durham,Durham,UK;4.Faculty of Physics, Institute of Theoretical Physics,University of Warsaw,Warsaw,Poland;5.High Energy Physics Group, Blackett Laboratory,Imperial College,London,UK;6.Fermi National Accelerator Laboratory,Batavia,USA;7.Physics Department,University of Illinois at Chicago,Chicago,USA;8.Experimental Physics Department, CERN,Geneva 23,Switzerland;9.Antwerp University,Wilrijk,Belgium;10.ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne,Melbourne,Australia;11.Theoretical Particle Physics and Cosmology Group, Department of Physics,King’s College London,London,UK;12.Theoretical Physics Department,CERN,Geneva 23,Switzerland;13.H.H.?Wills Physics Laboratory,University of Bristol,Bristol,UK;14.Campus of International Excellence UAM+CSIC,Madrid,Spain;15.Instituto de Física Teórica UAM-CSIC,Madrid,Spain;16.Instituto de Física de Cantabria (CSIC-UC),Cantabria,Spain;17.Physik-Institut, Universit?t Zürich,Zurich,Switzerland;18.Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa,Japan;19.William I. Fine Theoretical Physics Institute,School of Physics and Astronomy, University of Minnesota,Minneapolis,USA
Abstract:We perform a likelihood analysis of the minimal anomaly-mediated supersymmetry-breaking (mAMSB) model using constraints from cosmology and accelerator experiments. We find that either a wino-like or a Higgsino-like neutralino LSP, \(\tilde{\chi }^0_{1}\), may provide the cold dark matter (DM), both with similar likelihoods. The upper limit on the DM density from Planck and other experiments enforces \(m_{\tilde{\chi }^0_{1}} \lesssim 3 \,\, \mathrm {TeV}\) after the inclusion of Sommerfeld enhancement in its annihilations. If most of the cold DM density is provided by the \(\tilde{\chi }^0_{1}\), the measured value of the Higgs mass favours a limited range of \(\tan \beta \sim 5\) (and also for \(\tan \beta \sim 45\) if \(\mu > 0\)) but the scalar mass \(m_0\) is poorly constrained. In the wino-LSP case, \(m_{3/2}\) is constrained to about \(900\,\, \mathrm {TeV}\) and \(m_{\tilde{\chi }^0_{1}}\) to \(2.9\pm 0.1\,\, \mathrm {TeV}\), whereas in the Higgsino-LSP case \(m_{3/2}\) has just a lower limit \(\gtrsim 650\,\, \mathrm {TeV}\) (\(\gtrsim 480\,\, \mathrm {TeV}\)) and \(m_{\tilde{\chi }^0_{1}}\) is constrained to \(1.12 ~(1.13) \pm 0.02\,\, \mathrm {TeV}\) in the \(\mu >0\) (\(\mu <0\)) scenario. In neither case can the anomalous magnetic moment of the muon, \((g-2)_\mu \), be improved significantly relative to its Standard Model (SM) value, nor do flavour measurements constrain the model significantly, and there are poor prospects for discovering supersymmetric particles at the LHC, though there are some prospects for direct DM detection. On the other hand, if the \(\tilde{\chi }^0_{1}\) contributes only a fraction of the cold DM density, future LHC Open image in new window /></a> </span>-based searches for gluinos, squarks and heavier chargino and neutralino states as well as disappearing track searches in the wino-like LSP region will be relevant, and interference effects enable <span class=\(\mathrm{BR}(B_{s, d} \rightarrow \mu ^+\mu ^-)\) to agree with the data better than in the SM in the case of wino-like DM with \(\mu > 0\).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号