Hot-wire spatial resolution effects in measurements of grid-generated turbulence |
| |
Authors: | A. Ashok S. C. C. Bailey M. Hultmark A. J. Smits |
| |
Affiliation: | 1. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA 2. Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA
|
| |
Abstract: | We use grid-generated turbulence as a benchmark flow to test the effects of spatial resolution on turbulence measurements with hot wires. To quantify the spatial filtering, measurements of the turbulence statistics and spectra downstream of the grid were made using hot wires of varying length and compared to the results from a new nanoscale thermal anemometry probe, which has a sensing length of the order of, or smaller than, the Kolmogorov scale. In order to separate the effects of temporal and spatial filtering, a study was performed to ensure that the data were free of the artifacts of temporal filtering so that differences in the measurements could be wholly attributed to spatial filtering. An empirical correlation for the attenuation of the streamwise Reynolds stress due to spatial filtering is constructed, and it is shown that these grid turbulence results relate directly to the near-wall region of wall-bounded flows, where the effects of spatial filtering are most acutely felt. The effect of spatial filtering on the streamwise spectrum function is observed to extend to almost all wavenumbers, even those significantly lower than the length of the hot wire itself. It is also shown that estimates of the Kolmogorov scale are affected by spatial filtering when wires longer than the Kolmogorov length are used. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|