首页 | 本学科首页   官方微博 | 高级检索  
     

基于UV-Vis吸收光谱的活性大红BES的光催化降解BPNN模拟研究
引用本文:张运陶,何国利,向明礼. 基于UV-Vis吸收光谱的活性大红BES的光催化降解BPNN模拟研究[J]. 光谱学与光谱分析, 2009, 29(10): 2824-2828. DOI: 10.3964/j.issn.100010593(2009)10-2824-05
作者姓名:张运陶  何国利  向明礼
作者单位:西华师范大学应用化学研究所,四川,南充,637002;四川大学化工学院,四川,成都,610065
基金项目:国家自然科学基金,四川省科技厅项目 
摘    要:以对Plackett-Burman设计实验结果筛选确定的TiO2用量、溶液初始浓度0、光照射时间t、溶液初始pH值4个因素为自变量,脱色率为因变量,采用BP神经网络基于Box-Behnken设计和U10(10×52×2)设计实验数据建模,对活性大红BES溶液进行光催化降解模拟研究。降解过程中BES溶液的脱色率通过紫外-可见分光光度法测定后计算获得。建立的BPNN模型对训练集和预测集计算结果相关系数r分别为0.996 4和0.963 6,脱色率实验值与预测值的平均相对误差MRE分别为6.14%和7.76%。将该模型用于分析各因素对BES光催化降解的影响,表明初始浓度较低时,pH 5.0和适当的cTiO2条件下有利于提高BES的降解率。根据该模型分析得出0为40 mg·L-1时的优化实验条件为pH 5.0,cTiO2=1.20 g·L-1,t=35 min,该条件下BES脱色率的模型计算值为99.16%。经实验验证获得的脱色率为98.20%,脱色率计算值与实验值十分接近,相对误差仅为-0.96%。

关 键 词:活性大红BES  光催化降解  紫外-可见分光光度法  BP神经网络  模拟
收稿时间:2008-09-16

BPNN Simulation of Photocatalytic Degradation of Reactive Scarlet BES by UV-Vis Spectrophotometer
ZHANG Yun-tao,HE Guo-li,XIANG Ming-li. BPNN Simulation of Photocatalytic Degradation of Reactive Scarlet BES by UV-Vis Spectrophotometer[J]. Spectroscopy and Spectral Analysis, 2009, 29(10): 2824-2828. DOI: 10.3964/j.issn.100010593(2009)10-2824-05
Authors:ZHANG Yun-tao  HE Guo-li  XIANG Ming-li
Affiliation:1. Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China2. School of Chemical Engineering, Sichuan University, Chengdu 610065, China
Abstract:The use of chemometric techniques and multivariate experimental designs for the photoeatalytic reaction of reactive scarlet BES in aqueous solution under ultraviolet light irradiation is described. The efficiency of photocatalytic degradation was evaluated by the analysis of the parameter of deeoloration efficiency determined by UV absorption at 540 nm using a UV-Vis spectrophotometer in different conditions. Five factors, such as the amount of titanium oxide ([TiO2]), the concentrations of reactive searlet BES (c0), irradiation time (t), the pH value (pH) and temperature (T), were studied. [TiO2]. c0, t and pH selected on the basis of the results of variance analysis by Plaekett-Burman design were used as independent variables. Training sets and test sets of back propagation neural network (BPNN) were formed by Box-Behnken design and uniform design U10 (10× 52 ×2) respectively. The process of photoeatalytie degradation of the target object was simulated by the BPNN model. The correlation coefficient (r) of the calculation results for training set and test set by BPNN is 0. 996 4 and 0. 963 6 respectively, and the mean relative errors between the predictive value and experimental value of deeoloration efficiency are 6. 14 and 7. 76, respectively. The modeled BPNN was applied to analyze the influence of four factors on deeoloration efficiency. The results showed that the initial conditions of co being lower, pH 5.0 and appropriate amount of [TiO2] contribute to improving the deeoloratione fficiency of reactive scarlet BES. Under the condition of c0 =40 mg · L^-1, the optimized experimental condition of the system was obtained. [TiO2 ] = 1.20 g · L^-1 and pH 5.0. Under the optimized experimental condition, the experimental value of decoloration efficiency is 98. 20% when irradiation time is 35 minutes and the predictive value of decoloration efficiency is 99. 16% under the same condition. The relative error of decoloration efficiency between the predictive value and experimental value is only -0. 96%. The experimental value is very close to the model predicted value.
Keywords:Reactive Scarlet BES  Photocatalytic degradation  UV-Vis spectrophotometer  Decolorization eficiency  Back propagation neural network  Simulation
本文献已被 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号