Abstract: | Laminar-turbulent transition on the surface of a delta wing has been experimentally investigated in a supersonic wind tunnel at Mach numbers Mt8=3–5. It is shown that when M,=3, ReL=6.5·106, and =–5.5° much of the upper surface of the wing in the neighborhood of the line of symmetry is occupied by a wedge-shaped region of turbulent flow. In this region the heat fluxes reach the same values as at the heat transfer maxima induced here by separated flows and may exceed the turbulent heat flux level on the windward surface of the wing. Changing the shape of the under surface of the wing from plane to pyramidal leads to acceleration of the boundary layer transition on the under surface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 87–92, May–June, 1989. |