首页 | 本学科首页   官方微博 | 高级检索  
     


Reaction mechanism governing formation of 1,3-bis(diphenylphosphino)propane-protected gold nanoclusters
Authors:Hudgens Jeffrey W  Pettibone John M  Senftle Thomas P  Bratton Ryan N
Affiliation:Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA. Jeffrey.hudgens@nist.gov
Abstract:This report outlines the determination of a reaction mechanism that can be manipulated to develop directed syntheses of gold monolayer-protected clusters (MPCs) prepared by reduction of solutions containing 1,3-bis(diphenylphosphino)propane (L(3)) ligand and Au(PPh(3))Cl. Nanocluster synthesis was initiated by reduction of two-coordinate phosphine-ligated [Au(I)LL'](+) complexes (L, L' = PPh(3), L(3)), resulting in free radical complexes. The [Au(0)LL'](?) free radicals nucleated, forming a broad size distribution of ligated clusters. Timed UV-vis spectroscopy and electrospray ionization mass spectrometry monitored the ligated Au(x), 6 ≤ x ≤ 13, clusters, which comprise reaction intermediates and final products. By employing different solvents and reducing agents, reaction conditions were varied to highlight the largest portion of the reaction mechanism. We identified several solution-phase reaction classes, including dissolution of the gold precursor, reduction, continuous nucleation/core growth, ligand exchange, ion-molecule reactions, and etching of colloids and larger clusters. Simple theories can account for the reaction intermediates and final products. The initial distribution of the nucleation products contains mainly neutral clusters. However, the rate of reduction controls the amount of reaction overlap occurring in the system, allowing a clear distinction between reduction/nucleation and subsequent solution-phase processing. During solution-phase processing, the complexes undergo core etching and core growth reactions, including reactions that convert neutral clusters to cations, in a cyclic process that promotes formation of stable clusters of specific metal nuclearity. These processes comprise "size-selective" processing that can narrow a broad distribution into specific nuclearities, enabling development of tunable syntheses.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号