首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Integral equation theory for correcting truncation errors in molecular simulations
Institution:1. Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Germany;2. Zentrum für Ingenieurwissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany;1. Department of Physics, College of Education, Tikrit University, Tikrit, Iraq;2. School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia;3. Al-Balqa Applied University, Ajloun University College, Jordan;4. Energy Materials Laboratory (EML), Physics Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt;1. Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, México City D.F. 04510, México;2. Facultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia;1. Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India;2. Department of Chemistry, Indian Institute of Technology, Indore 452017, India;3. Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India;1. Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA;2. Institute of Apply Physics, Nizhny Novgorod, Russia;3. Laboratoire Inter-Universitaire des Systemes Atmospheriques, UMR 7583 CNRS et Universites Paris Est Creteil et Paris Diderot, 61, Avenue du General de Gaulle, 94010 Creteil Cedex, France
Abstract:Various strategies for correcting structural and energetic artefacts of molecular simulations with truncated potentials based on integral equation theory are described and applied to liquid water. The performance of the methods is examined for a range of cutoff distances and different shifted-force potentials. With the recently enhanced damped Coulomb potential (D. Zahn, B. Schilling, S.M. Kast, J. Phys. Chem. B, 106 (2002) 10725), parameterised and corrected by integral equation theory, radial distribution functions and excess internal energy very close to the Ewald simulation limit are obtained from a simulation with a cutoff distance of only 6 Å.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号