首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Non-linear micropolar and classical continua for anisotropic discontinuous materials
Institution:1. Faculty of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey;2. Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Via A. Gramsci, 53, Rome 00197, Italy;1. Multi Scale Mechanics, TS, CTW, UTwente, P.O. Box 217, 7500 AE Enschede, Netherlands
Abstract:Non-linear Cosserat and Cauchy anisotropic continua equivalent to masonry-like materials, like brick/block masonry, jointed rocks, granular materials or matrix/particle composites, are presented.An integral procedure of equivalence in terms of mechanical power has been adopted to identify the effective elastic moduli of the two continuous models starting from a Lagrangian system of interacting rigid elements. Non-linear constitutive functions for the interactions in the Lagrangian system are defined in order to take into account both the low capability to carry tension and the friction at the interfaces between elements. The non-linear problem is solved through a finite element procedure based on the iterative adjustment of the continuum constitutive tensor due to the occurrence of some limit situation involving the contact actions of the discrete model.Differences between the classical and the micropolar model are investigated with the aid of numerical analyses carried out on masonry walls made of blocks of different size. The capability of the micropolar continuum to discern, unlike the classical continuum, the behaviour of systems made of elements of different size is pointed out. It is also shown that for anisotropic materials, even in the elastic case, the micropolar solution in general does not tend to the classical solution when the size of the elements vanishes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号