首页 | 本学科首页   官方微博 | 高级检索  
     


Shape memory behaviour: modelling within continuum thermomechanics
Affiliation:1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02–106, Poland;2. Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75, Prague, Czech Republic
Abstract:A phenomenological material model to represent the multiaxial material behaviour of shape memory alloys is proposed. The material model is able to represent the main effects of shape memory alloys: the one-way shape memory effect, the two-way shape memory effect due to external loads, the pseudoelastic and pseudoplastic behaviour as well as the transition range between pseudoelasticity and pseudoplasticity.The material model is based on a free energy function and evolution equations for internal variables. By means of the free energy function, the energy storage during thermomechanical processes is described. Evolution equations for internal variables, e.g. the inelastic strain tensor or the fraction of martensite are formulated to represent the dissipative material behaviour. In order to distinguish between different deformation mechanisms, case distinctions are introduced into the evolution equations. Thermomechanical consistency is ensured in the sense that the constitutive model satisfies the Clausius–Duhem inequality.Finally, some numerical solutions of the constitutive equations for isothermal and non-isothermal strain and stress processes demonstrate that the various phenomena of the material behaviour are well represented. This applies for uniaxial processes and for non-proportional loadings as well.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号