首页 | 本学科首页   官方微博 | 高级检索  
     


Cross-sections, quotients, and representation rings of semisimple algebraic groups
Authors:Vladimir L. Popov
Affiliation:1. Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8, Moscow, 119991, Russia
Abstract:Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny t:[^(G)] ? G tau :hat{G} to G is bijective; this answers Grothendieck’s question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg’s theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G] G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G] G and that of the representation ring of G and answer two Grothendieck’s questions on constructing generating sets of k[G] G . We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map TG/T where T is a maximal torus of G and W the Weyl group.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号