首页 | 本学科首页   官方微博 | 高级检索  
     

基于舌诊NIR反射光谱血清总蛋白含量的无创测量
引用本文:林凌,李哲,李晓霞,李永成,李刚,张宝菊,宋维. 基于舌诊NIR反射光谱血清总蛋白含量的无创测量[J]. 光谱学与光谱分析, 2012, 32(8): 2110-2116. DOI: 10.3964/j.issn.1000-0593(2012)08-2110-07
作者姓名:林凌  李哲  李晓霞  李永成  李刚  张宝菊  宋维
作者单位:1. 天津大学精密测试技术及仪器国家重点实验室,天津 300072
2. 河北工业大学电气工程学院电磁场与电器可靠性省部共建重点实验室,天津 300130
3. 天津师范大学物理与电子信息学院,天津 300387
基金项目:国家自然科学基金项目,天津市应用基础及前沿技术研究计划项目,天津市科技计划项目和科技型中小企业创新基金项目
摘    要:采用舌诊近红外反射光谱对人体血清总蛋白(TP)含量进行无创检测。采集58例舌尖反射光谱进行反射率归一化并记录相对应的血清总蛋白生化分析值,将样本分为训练集和预测集,运用主成分分析结合BP神经网络法和偏最小二乘算法分别建立预测模型。主成分分析结合BP神经网络模型对预测集进行预测,平均相对误差为7.35%,均方根误差为3.069 1 g·L-1,相关系数为0.902 1。偏最小二乘模型对预测集进行预测,平均相对误差为4.77%,均方根误差为0.130 1 g·L-1,相关系数为0.971 8。实验结果证实了舌诊近红外反射光谱可以较为准确地用于总蛋白含量的无创检测。

关 键 词:近红外反射光谱  舌诊  血清总蛋白(TP)  BP神经网络  偏最小二乘(PLS)  
收稿时间:2011-12-07

Noninvasive Measurement of Serum Total Protein Content by Near-Infrared Reflection Spectra with Tongue Inspection
LIN Ling , LI Zhe , LI Xiao-xia , LI Yong-cheng , LI Gang , ZHANG Bao-ju , SONG Wei. Noninvasive Measurement of Serum Total Protein Content by Near-Infrared Reflection Spectra with Tongue Inspection[J]. Spectroscopy and Spectral Analysis, 2012, 32(8): 2110-2116. DOI: 10.3964/j.issn.1000-0593(2012)08-2110-07
Authors:LIN Ling    LI Zhe    LI Xiao-xia    LI Yong-cheng    LI Gang    ZHANG Bao-ju    SONG Wei
Affiliation:1. State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China2. Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China3. College of Physics & Electronic Information, Tianjin Normal University, Tianjin 300387, China
Abstract:The technology of tongue near-infrared reflectance spectra was used for human serum total protein(TP) content of noninvasive testing for the first time.Reflectance spectrum on the tongue tips of 58 volunteers was collected,and the biochemical values of serum total protein were recorded at the same time.The samples were separated into two parts: training set and prediction set.Two prediction models were established using PCA combined with BP neural network and PLS.Using PCA-BP model to predict the prediction set,the average relative error is 7.35%,RMSEP was 6.377 1 g·L-1,and the correlation coefficient was 0.902 1.Using PLS model to predict the prediction set,the average relative error is 4.77%,RMSEP was 0.130 4 g·L-1,and the correlation coefficient was 0.971 8.It was approved that reflectance spectra of tongue can be used to predict TP accurately and noninvasively.
Keywords:NIR normalized reflection spectroscopy  Tongue inspection  Total protein(TP)  BP neural networks  Partial least squares
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号