首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sensitivity of methyl thiolate desulfurization selectivity to reaction temperature and hydroxyl coverage
Authors:Kang D H  Friend C M
Institution:Department of Chemistry & Division of Engineering & Applied Sciences, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
Abstract:The adsorption and reaction of methanethiol (CH3SH) and dimethyl disulfide (CH3SSCH3) on Mo(110)-(1 x 6)-O have been studied using temperature-programmed reaction spectroscopy and reflection-absorption infrared spectroscopy over the temperature range of 110-550 K. The S-H bond is broken upon adsorption to form adsorbed OH, water, and methyl thiolate (CH3S-) at low temperature. Water is evolved at 210 and 310 K via molecular desorption and disproportionation of OH, respectively. Some hydroxyl remains on the surface up to 350 K. Methyl thiolate is also formed from CH3SSCH3 on Mo(110)-(1 x 6)-O. Methyl thiolate undergoes C-S cleavage above 300 K, yielding methane and methyl radicals. There is also a minor amount of nonselective decomposition leading to the formation of carbon and hydrogen. Methane production is promoted by adsorbed hydroxyl. As the hydroxyl coverage increases, the yield of methyl radicals relative to methane diminishes. Accordingly, there is more methane produced from methanethiol reaction than from dimethyl disulfide, since S-H dissociation in CH3SH produces OH. The maximum coverage of the thiolate is approximately 0.5 monolayers, based on the amount of sulfur remaining after reaction measured by Auger electron spectroscopy. In contrast to cyclopropylmethanethiol (c-C3H5CH2SH), for which alkyl transfer from sulfur to oxygen is observed, there is no evidence for transfer of the methyl group of methyl thiolate to oxygen on the surface. Specifically, there is no evidence for methoxy (CH3O-) in infrared spectroscopy or temperature-programmed reaction experiments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号