首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time-Dependent Diffusion and Surface-Enhanced Relaxation in Stochastic Replicas of Porous Rock
Authors:Olayinka  S  Ioannidis  M A
Institution:(1) Department of Chemical Engineering, Porous Media Research Institute, University of Waterloo, Waterloo, Ont., Canada, N2L 3G1
Abstract:Understanding the connection between pore structure and NMR behavior of fluid-saturated porous rock is essential in interpreting the results of NMR measurements in the field or laboratory and in establishing correlations between NMR parameters and petrophysical properties. In this paper we use random-walk simulation to study NMR relaxation and time-dependent diffusion in 3D stochastic replicas of real porous media. The microstructures are generated using low-order statistical information (porosity, void–void autocorrelation function) obtained from 2D images of thepore space. Pore size distributions obtained directly by a 3D pore space partitioning method and indirectly by inversion of NMR relaxation data are compared for the first time. For surface relaxation conditions typical of reservoir rock, diffusional coupling between pores of different size is observed to cause considerable deviations between the two distributions. Nevertheless, the pore space correlation length and the size of surface asperity are mirrored in the NMR relaxation data for the media studied. This observation is used to explain the performance of NMR-based permeability correlations. Additionally, the early time behavior of the time-dependent diffusion coefficient is shown to reflect the average pore surface-to-volume ratio. For sufficiently high values of the self-diffusion coefficient, the tortuosity of the pore space is also recovered from the long-time behavior of the time-dependent diffusion coefficient, even in the presence of surface relaxation. Finally, the simulations expose key limitations of the stochastic reconstruction method, and allow suggestions for future development to be made.
Keywords:NMR  diffusion  relaxation  permeability  pore size distribution  tortuosity  random media  microporosity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号