首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Formation region of emitted α and heavier particles inside radioactive nuclei
摘    要:We investigate the formation distance(R_0) from the center of the radioactive parent nucleus at which the emitted cluster is most probably formed. The calculations are performed microscopically starting with the solution to the time-independent Schr?dinger wave equation for the cluster-core system, using nuclear potentials based on the Skyrme-SLy4 nucleon-nucleon interactions and folding Coulomb potential, to determine the incident and transmitted wave functions of the system. Our results show that the emitted cluster is mostly formed in the pre-surface region of the nucleus, under the effect of Pauli blocking from the saturated core density. The deeper α-formation distance inside the nucleus allows less preformation probability and indicates a more stable nucleus for a longer half-life. Furthermore, the α-particle tends to be formed at a slightly deeper region inside the nuclei, with larger isospin asymmetry, and in the closed shell nuclei. Regarding the heavy clusters, we observed that the formation distance of the emitted clusters heavier than α-particle increased via increasing the isospin asymmetry of the formed cluster rather than by increasing its mass number. The partial half-life of a certain cluster-decay mode increased with increase of either the mass number or the isospin asymmetry of the emitted cluster.

收稿时间:2020-07-01

Formation region of emitted α and heavier particles inside radioactive nuclei
Authors:W M Seif  A M H Abdelhady
Institution:1. Cairo University, Faculty of Science, Department of Physics, 12613 Giza, Egypt2. Beni-Suef University, Faculty of Navigation Science and Space Technology, 62514 Beni-Suef, Egypt
Abstract:We investigate the formation distance (R0) from the center of the radioactive parent nucleus at which the emitted cluster is most probably formed. The calculations are performed microscopically starting with the solution to the time-independent Schr?dinger wave equation for the cluster-core system, using nuclear potentials based on the Skyrme-SLy4 nucleon-nucleon interactions and folding Coulomb potential, to determine the incident and transmitted wave functions of the system. Our results show that the emitted cluster is mostly formed in the pre-surface region of the nucleus, under the effect of Pauli blocking from the saturated core density. The deeper α-formation distance inside the nucleus allows less preformation probability and indicates a more stable nucleus for a longer half-life. Furthermore, the α-particle tends to be formed at a slightly deeper region inside the nuclei, with larger isospin asymmetry, and in the closed shell nuclei. Regarding the heavy clusters, we observed that the formation distance of the emitted clusters heavier than α-particle increased via increasing the isospin asymmetry of the formed cluster rather than by increasing its mass number. The partial half-life of a certain cluster-decay mode increased with increase of either the mass number or the isospin asymmetry of the emitted cluster.
Keywords:alpha-decay  cluster decay  Skyrme-SLy4 nucleon-nucleon interaction  formation region
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理C(英文版)》浏览原始摘要信息
点击此处可从《中国物理C(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号