首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An FPTAS for minimizing the product of two non-negative linear cost functions
Authors:Vineet Goyal  Latife Genc-Kaya  R Ravi
Institution:1.Operations Research Center,Massachusetts Institute of Technology,Cambridge,USA;2.Tepper School of Business,Carnegie Mellon University,Pittsburgh,USA
Abstract:We consider a quadratic programming (QP) problem (Π) of the form min x T C x subject to Axb, x ≥ 0 where \({C\in {\mathbb R}^{n \times n}_+, {\rm rank}(C)=1}\) and \({A\in {\mathbb R}^{m \times n}, b\in {\mathbb R}^m}\) . We present an fully polynomial time approximation scheme (FPTAS) for this problem by reformulating the QP (Π) as a parameterized LP and “rounding” the optimal solution. Furthermore, our algorithm returns an extreme point solution of the polytope. Therefore, our results apply directly to 0–1 problems for which the convex hull of feasible integer solutions is known such as spanning tree, matchings and sub-modular flows. They also apply to problems for which the convex hull of the dominant of the feasible integer solutions is known such as s, t-shortest paths and s, t-min-cuts. For the above discrete problems, the quadratic program Π models the problem of obtaining an integer solution that minimizes the product of two linear non-negative cost functions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号