首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of fractal gating of potassium channels on neuronal behaviours
Authors:Zhao De-Jiang  Zeng Shang-You and Zhang Zheng-Zhen
Institution:Department of Physics, Xiangtan University, Xiangtan 411105, China;College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China;College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China
Abstract:The classical model of voltage-gated ion channels assumes that according to a Markov process ion channels switch among a small number of states without memory, but a bunch of experimental papers show that some ion channels exhibit significant memory effects, and this memory effects can take the form of kinetic rate constant that is fractal. Obviously the gating character of ion channels will affect generation and propagation of action potentials, furthermore, affect generation, coding and propagation of neural information. However, there is little previous research on this series of interesting issues. This paper investigates effects of fractal gating of potassium channel subunits switching from closed state to open state on neuronal behaviours. The obtained results show that fractal gating of potassium channel subunits switching from closed state to open state has important effects on neuronal behaviours, increases excitability, rest potential and spiking frequency of the neuronal membrane, and decreases threshold voltage and threshold injected current of the neuronal membrane. So fractal gating of potassium channel subunits switching from closed state to open state can improve the sensitivity of the neuronal membrane, and enlarge the encoded strength of neural information.
Keywords:memory effects  fractal gating  neuronal spiking
本文献已被 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号