首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development of an Unsteady-State Model for Control of Polymer Grade Transitions in Ziegler-Natta Catalyzed Reactor Systems
Authors:Randhir Rawatlal  Ioan Tincul
Institution:1. Department of Chemical Engineering, University of Cape Town, Rondebosch 7701, South Africa;2. UNESCO Associated Centre for Macromolecules, University of Stellenbosch, South Africa
Abstract:The dynamics of the activity and polymer growth in Ziegler-Natta catalysts has been well established in the literature. 1 , 2 The corresponding dynamic behaviour of the reactor system is predicted using a segregation model approach and the unsteady state model of residence time distribution previously developed. 3 The model is therefore able to predict reactor performance for a time-varying catalyst flow rate through the reactor, as well as time-varying concentrations of monomer, co-catalyst and chain termination agent. A method of determining grade transition policies by the use of the developed reactor models is then presented. It is demonstrated that the reactor productivity, catalyst efficiency, average chain length and polydispersity can be controlled by the catalyst flow rate and reactor monomer and hydrogen concentrations. The relationship between the required polymer product properties and the system flow rates is determined. Case studies are presented that evaluate various transition strategies for a specific polymer grades.
Keywords:computer modelling  polymer grade transitions  residence time distribution  unsteady state modelling  Ziegler-Natta polymerisation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号