首页 | 本学科首页   官方微博 | 高级检索  
     


DNA cleavage activities of tetraazamacrocyclic oxamido nickel(II) complexes
Authors:Li-Na Zhu  De-Ming Kong  Xiao-Zeng Li  Guang-Yu Wang  Jiao Wang  Ya-Wei Jin
Affiliation:1. Department of Chemistry, Tianjin University, Tianjin 300072, PR China;2. Department of Chemistry, Nankai University, Tianjin 300071, PR China
Abstract:The DNA cleavage activities of nickel(II) ion and four closely related macrocyclic nickel(II) complexes NiL1 ∼ NiL4 in the absence of any added redox cofactors are compared and the structure of NiL3 methanol solvate has been characterized by single crystal X-ray analysis, where L1 ∼ L4 are the dianions of tetraazamacrocyclic oxamido Schiff bases. In NiL3·MeOH, the macrocyclic [N4] ligand coordinates to the central Ni(II) ion forming a distorted square–planar geometry. The adjacent mononuclear molecules are linked by O–H?O hydrogen bonds and Ni?O and Ni?L van der Waals forces into 2D supramolecular structure. Agarose gel electrophoresis studies indicate that the ability of these nickel(II) complexes to cleave DNA is highly dependent upon the ligand employed. In the absence of any added oxidizing agents, only NiL3 is a relatively good DNA cleavage agent, and the process of plasmid DNA cleavage is much sensitive to ionic strength and pH value. The NiL3-mediated DNA cleavage reaction is a typical pseudo-first-order consecutive reaction, and the rate constants of 0.148 ± 0.007 h−1 (k1) and 0.0118 ± 0.0018 h−1 (k2) for the conversion of supercoiled to nicked DNA and nicked to linear DNA are obtained in presence of 0.5 mmol L−1 NiL3. The results of DNA cleavage experiments, combining with those of circular dichroism (CD) and fluorescence spectroscopy indicate that the main binding modes between DNA and the complexes should be groove binding and electrostatic interaction.
Keywords:Nickel(II) complex   Schiff base tetraazamacrocyclic complex   Crystal structure   DNA cleavage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号