首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time-dependent numerical modeling of large-scale astrophysical processes: from relatively smooth flows to explosive events with extremely large discontinuities and high Mach numbers
Authors:Petr Kurfürst  Jiří Krtička
Institution:1.Department of Theoretical Physics and Astrophysics,Masaryk University,Brno,Czech Republic
Abstract:We calculate self-consistent time-dependent models of astrophysical processes. We have developed two types of our own (magneto) hydrodynamic codes, either the operator-split, finite volume Eulerian code on a staggered grid for smooth hydrodynamic flows, or the finite volume unsplit code based on the Roe’s method for explosive events with extremely large discontinuities and highly supersonic outbursts. Both the types of the codes use the second order Navier-Stokes viscosity to realistically model the viscous and dissipative effects. They are transformed to all basic orthogonal curvilinear coordinate systems as well as to a special non-orthogonal geometric system that fits to modeling of astrophysical disks. We describe mathematical background of our codes and their implementation for astrophysical simulations, including choice of initial and boundary conditions. We demonstrate some calculated models and compare the practical usage of numerically different types of codes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号