首页 | 本学科首页   官方微博 | 高级检索  
     


Photodissociation dynamics of methyl nitrate at 193 nm: energy disposal in methoxy and nitrogen dioxide products
Authors:Derro Erika L  Murray Craig  Lester Marsha I  Marshall Mark D
Affiliation:Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
Abstract:The photodissociation dynamics of methyl nitrate, CH(3)ONO(2), has been investigated at 193 nm by examining the products from the primary dissociation channel, namely CH(3)O and NO(2). The CH(3)O (X (2)E) photoproducts were probed by laser-induced fluorescence (LIF) on the A (2)A(1)-X (2)E transition under both nascent and jet-cooled conditions. The 3 and 3 bands originating from the vibrationless and C-O stretch (nu(3)) levels, respectively, were characterized to obtain the internal energy distribution of the CH(3)O products. Only a small fraction of the CH(3)O products (< or =10%) were produced with one quantum of C-O stretch excitation as determined from the relative intensities of the bands in combination with transition probabilities derived from dispersed fluorescence measurements and/or calculated Franck-Condon factors. The CH(3)O products also had minimal rotational excitation: those produced in the ground vibrational state had a rotational temperature of 238 +/- 7 K, corresponding to less than 1% of the available energy. Products with C-O stretch excitation were found to have a higher rotational temperature, but still a small fraction of the total energy. Combining the CH(3)O internal energy findings with previous photofragment translational energy measurements [X. Yang, P. Felder and J. R. Huber, J. Phys. Chem., 1993, 97, 10903] indicates that most of the available energy is deposited in the NO(2) fragment. This is verified through dispersed fluorescence measurements which show that the NO(2) fragment is produced electronically excited with internal energies extending to the NO + O dissociation limit. Ab initio calculations confirm that the dominant initial excitation is strongly localized on the NO(2) moiety. The calculations are also used to reveal the forces that give rise to internal excitation of the CH(3)O fragment upon electronic excitation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号