首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of thickness of functional layer on performance of organic salt-doped OLED with ITO/PVK:PBD:TBAPF6/Al structure
Institution:1. School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia;2. Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Abstract:The effect of thickness of functional layer on the electrical and electroluminescence (EL) properties of single-layer OLED with ITO/PVK:PBD:TBAPF6/Al structure were investigated where indium tin oxide (ITO) was used as anode, poly(9-vinylcarbazole) (PVK) as polymeric host, 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) as electron-transporting molecule, tetrabutylammonium hexafluorophosphate (TBAPF6) as organic salt dopant and aluminium (Al) as cathode. A unique transition phenomenon at high bias voltage in the devices was observed and the transition was reversible. The transition voltage and turn on voltage decreased with the decrease of functional layer thickness. The turn on voltage was approximately 5.5 V and 6.5 V for 55-nm-thick and 95-nm-thick devices, respectively. However, the current efficiency of 95-nm-thick device was higher than the 55-nm-thick device. More interestingly, the Commission Internationale d’Eclairage (C.I.E.) coordinates of EL spectra of 95-nm-thick device at bias voltage ranging from 7 V to 13 V located in the white light region even without any dye doping. The PL and EL spectra were found completely different. PBD electromer was proposed to dominate the EL spectrum, but the contribution from PVK–PBD electroplex cannot be completely ruled out.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号