首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear analysis of high-harmonic slotted gyro-TWT amplifier
Authors:Chong   C.K. McDermott   D.B. Balkcum   A.J. Luhmann   N.C.   Jr.
Affiliation:Dept. of Electr. Eng., California Univ., Los Angeles, CA;
Abstract:A nonlinear self-consistent simulation code is employed to investigate the behavior of the slotted gyrotron traveling-wave amplifier (gyro-TWT), in which an axis-encircling electron beam synchronously interacts with a high-order azimuthal mode in a magnetron-type waveguide. The efficiency of a fourth-harmonic device with an ideal 60 kV, 5 A beam is shown to reach 30% for α≡νz=2. The growth rate for the π mode is roughly 25% larger than for the 2π mode. The efficiency increases for lower voltage and the device is found to be moderately sensitive to the radial spread of the beam's guiding center position and extremely sensitive to the axial velocity spread. For an ideal 60 kV, 5 A beam with α=1.5, the efficiency of a second-harmonic gyro-TWT is 42% and falls to 10% for an eighth-harmonic device. The design of a 35 GHz, 60 kV, 5A, α=1.5, eight-vane, fourth-harmonic gyro-TWT with 7% axial velocity spread is presented. It is predicted that this design will yield a peak output power of 90 kW, a peak efficiency of 30%, and 6.3% saturated bandwidth
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号