首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrochemical characterization of an asymmetric nanofiltration membrane with NaCl and KCl solutions: influence of membrane asymmetry on transport parameters
Authors:Cañas A  Benavente J
Institution:Grupo de Caracterización Electrocinética y de Transporte en Membranas e Interfases, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain.
Abstract:Electrochemical characterization of a nanofiltration asymmetric membrane was carried out by measuring membrane potential, salt diffusion, and electrical parameters (membrane electrical resistance and capacitance) with the membrane in contact with NaCl and KCl solutions at different concentrations (10(-3)< or =c(M)< or =5 x 10(-2)). From these experiments characteristic parameters such as the effective concentration of charge in the membrane, ionic transport numbers, and salt and ionic permeabilities across the membrane were determined. Membrane electrical resistance and capacitance were obtained from impedance spectroscopy (IS) measurements by using equivalent circuits as models. This technique allows the determination of the electrical contribution associated with each sublayer; then, assuming that the dense sublayer behaves as a plane capacitor, its thickness can be estimated from the capacitance value. The influence of membrane asymmetry on transport parameters have been studied by carrying out measurements for the two opposite external conditions. Results show that membrane asymmetry strongly affects membrane potential, which is attributed to the Donnan exclusion when the solutions in contact with the dense layer have concentrations lower than the membrane fixed charge (X(ef) approximately -0.004 M), but for the reversal experimental condition (high concentration in contact with the membrane dense sublayer) the membrane potential is practically similar to the solution diffusion potential. The comparison of results obtained for both electrolytes agrees with the higher conductivity of KCl solutions. On the other hand, the influence of diffusion layers at the membrane/solution interfaces in salt permeation was also studied by measuring salt diffusion at a given NaCl concentration gradient but at five different solutions stirring rates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号