首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solutions to Some Open Problems in Fluid Dynamics
Authors:Linghai ZHANG
Institution:Department of Mathematics, Lehigh University, 14 East Packer Avenue, Bethlehem, Pennsylvania 18015, USA
Abstract:Let u = u(x, t, u 0) represent the global solution of the initial value problem for the one-dimensional fluid dynamics equation
$$
u_t  - \varepsilon u_{xxt}  + \delta u_x  + \gamma Hu_{xx}  + \beta u_{xxx}  + f(u)_x  = \alpha u_{xx} ,u(x,0) = u_0 (x),
$$
where α > 0, β ≥ 0, γ ≥ 0, δ ≥ 0 and ε ≥ 0 are constants. This equation may be viewed as a one-dimensional reduction of n-dimensional incompressible Navier-Stokes equations. The nonlinear function satisfies the conditions f(0) = 0, |f(u)| → ∞ as |u| → ∞, and fC 1 (ℝ), and there exist the following limits
$$
L_0  = \mathop {lim sup}\limits_{u \to 0} \frac{{f(u)}}
{{u^3 }}andL_\infty   = \mathop {lim sup}\limits_{u \to \infty } \frac{{f(u)}}
{{u^5 }}.
$$
. Suppose that the initial function u 0L 1(ℝ) ∩ H 2(ℝ). By using energy estimates, Fourier transform, Plancherel’s identity, upper limit estimate, lower limit estimate and the results of the linear problem
$$
v_t  - \varepsilon v_{xxt}  + \delta v_x  + \gamma Hv_{xx}  + \beta v_{xxx}  = \alpha v_{xx} ,v(x,0) = v_0 (x),
$$
the author justifies the following limits (with sharp rates of decay)
$$
\mathop {\lim }\limits_{t \to \infty } \left {(1 + t)^{m + {1 \mathord{\left/
 {\vphantom {1 2}} \right.
 \kern-\nulldelimiterspace} 2}} \smallint _\mathbb{R} |u_{x^m } (x,t)|^2 dx} \right] = \frac{1}
{{2\pi }}\left( {\frac{\pi }
{{2\alpha }}} \right)^{{1 \mathord{\left/
 {\vphantom {1 2}} \right.
 \kern-\nulldelimiterspace} 2}} \frac{{m!!}}
{{(4\alpha )^m }}\left {\smallint _\mathbb{R} u_0 (x)dx} \right]^2 ,
$$
if
$$
\smallint _\mathbb{R} u_0 (x)dx \ne 0,
$$
where 0!! = 1, 1!! = 1 and m!! = 1 · 3 ⋯ · (2m–3) · (2m − 1). Moreover
$$
\mathop {\lim }\limits_{t \to \infty } \left {(1 + t)^{m + {3 \mathord{\left/
 {\vphantom {3 2}} \right.
 \kern-\nulldelimiterspace} 2}} \smallint _\mathbb{R} |u_{x^m } (x,t)|^2 dx} \right] = \frac{1}
{{2\pi }}\left( {\frac{\pi }
{{2\alpha }}} \right)^{{1 \mathord{\left/
 {\vphantom {1 2}} \right.
 \kern-\nulldelimiterspace} 2}} \frac{{(m + 1)!!}}
{{(4\alpha )^{m + 1} }}\left {\smallint _\mathbb{R} \rho _0 (x)dx} \right]^2 ,
$$
if the initial function u 0(x) = ρ 0′ (x), for some function ρ 0C 1(ℝ) ∩ L 1(ℝ) and
$$
\smallint _\mathbb{R} \rho _0 (x)dx \ne 0.
$$
.
Keywords:Exact limits  Sharp rates of decay  Fluid dynamics equation  Global smooth solutions
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《数学年刊B辑(英文版)》浏览原始摘要信息
点击此处可从《数学年刊B辑(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号