首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhanced stability of surfactant-based semipermanent wall coatings in capillary electrophoresis using oppositely charged surfactant
Authors:Liu Qian  Yang Yanmin  Yao Shouzhuo
Institution:State Key Lab of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China.
Abstract:Semipermanent surfactant coatings are effective for the prevention of wall adsorption of proteins in CE. However, they often suffer from their unsatisfactory coating stability as they essentially degrade from the capillary walls after the surfactants are removed from the buffer. In this paper, we proposed a facile and universal method to improve the stability of semipermanent surfactant coatings based on addition of an oppositely charged surfactant into the coating. Didodecyldimethylammonium bromide (DDAB) and a gemini surfactant, 18-6-18, were used as the model semipermanent coatings, and sodium dodecyl sulfate (SDS) was chosen as their oppositely charged surfactant. SDS can strongly alter the packing parameter P of the cationic surfactants, and consequently mediates the coating stability. With the increase of SDS concentration in coating, the coating stability first dramatically increases due to the enlarged P, and then decreases due to the weakness of electrostatic interaction between the capillary wall and surfactant coating. At the proper SDS concentration, very stable coatings can be obtained that, even after rinsing under 138 kPa for 60 min, the reversed electroosmotic flow (EOF) only decreases by 3.6%. These SDS-enhanced coatings show excellent stability and reproducibility in protein separation (RSD of migration time <1.1% for run-to-run assay, n=9). Also, the high separation efficiency (>500,000 plates/m) and fine recovery of tested proteins indicate that these coatings are powerful in wall adsorption suppression. Finally, we found that the separation efficiency of protein was a more exact indicator for the coating stability than the traditional EOF magnitude.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号