首页 | 本学科首页   官方微博 | 高级检索  
     检索      


WIMP dark matter from gravitino decays and leptogenesis
Authors:W Buchmüller  V DomckeK Schmitz
Institution:Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
Abstract:The spontaneous breaking of B−LBL symmetry naturally accounts for the small observed neutrino masses via the seesaw mechanism. We have recently shown that the cosmological realization of B−LBL breaking in a supersymmetric theory can successfully generate the initial conditions of the hot early universe, i.e. entropy, baryon asymmetry and dark matter, if the gravitino is the lightest superparticle (LSP). This implies relations between neutrino and superparticle masses. Here we extend our analysis to the case of very heavy gravitinos which are motivated by hints for the Higgs boson at the LHC. We find that the nonthermal production of ‘pure’ wino or higgsino LSPs, i.e. weakly interacting massive particles (WIMPs), in heavy gravitino decays can account for the observed amount of dark matter while simultaneously fulfilling the constraints imposed by primordial nucleosynthesis and leptogenesis within a range of LSP, gravitino and neutrino masses. For instance, a mass of the lightest neutrino of 0.05 eV0.05 eV would require a higgsino mass below 900 GeV900 GeV and a gravitino mass of at least 10 TeV10 TeV.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号