首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling the 2-His-1-carboxylate facial triad: iron-catecholato complexes as structural and functional models of the extradiol cleaving dioxygenases
Authors:Bruijnincx Pieter C A  Lutz Martin  Spek Anthony L  Hagen Wilfred R  Weckhuysen Bert M  van Koten Gerard  Gebbink Robertus J M Klein
Institution:Organic Chemistry and Catalysis Group, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
Abstract:Mononuclear iron(II)- and iron(III)-catecholato complexes with three members of a new 3,3-bis(1-alkylimidazol-2-yl)propionate ligand family have been synthesized as models of the active sites of the extradiol cleaving catechol dioxygenases. These enzymes are part of the superfamily of dioxygen-activating mononuclear non-heme iron enzymes that feature the so-called 2-His-1-carboxylate facial triad. The tridentate, tripodal, and monoanionic ligands used in this study include the biologically relevant carboxylate and imidazole donor groups. The structure of the mononuclear iron(III)-tetrachlorocatecholato complex Fe(L3)(tcc)(H2O)] was determined by single-crystal X-ray diffraction, which shows a facial N,N,O capping mode of the ligand. For the first time, a mononuclear iron complex has been synthesized, which is facially capped by a ligand offering a tridentate Nim,Nim,Ocarb donor set, identical to the endogenous ligands of the 2-His-1-carboxylate facial triad. The iron complexes are five-coordinate in noncoordinating media, and the vacant coordination site is accessible for Lewis bases, e.g., pyridine, or small molecules such as dioxygen. The iron(II)-catecholato complexes react with dioxygen in two steps. In the first reaction the iron(II)-catecholato complexes rapidly convert to the corresponding iron(III) complexes, which then, in a second slow reaction, exhibit both oxidative cleavage and auto-oxidation of the substrate. Extradiol and intradiol cleavage are observed in noncoordinating solvents. The addition of a proton donor results in an increase in extradiol cleavage. The complexes add a new example to the small group of synthetic iron complexes capable of eliciting extradiol-type cleavage and provide more insight into the factors determining the regioselectivity of the enzymes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号