首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Multiresolution Gaussian Process Model for the Analysis of Large Spatial Datasets
Authors:Douglas Nychka  Soutir Bandyopadhyay  Dorit Hammerling  Finn Lindgren  Stephan Sain
Abstract:We develop a multiresolution model to predict two-dimensional spatial fields based on irregularly spaced observations. The radial basis functions at each level of resolution are constructed using a Wendland compactly supported correlation function with the nodes arranged on a rectangular grid. The grid at each finer level increases by a factor of two and the basis functions are scaled to have a constant overlap. The coefficients associated with the basis functions at each level of resolution are distributed according to a Gaussian Markov random field (GMRF) and take advantage of the fact that the basis is organized as a lattice. Several numerical examples and analytical results establish that this scheme gives a good approximation to standard covariance functions such as the Matérn and also has flexibility to fit more complicated shapes. The other important feature of this model is that it can be applied to statistical inference for large spatial datasets because key matrices in the computations are sparse. The computational efficiency applies to both the evaluation of the likelihood and spatial predictions.
Keywords:Fixed rank kriging  Kriging  Sparse Cholesky decomposition  Spatial estimator
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号