首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational Aeroacoustics: An Overview of Computational Challenges and Applications
Authors:Christopher KW Tam
Institution:1. Department of Mathematics , Florida State University , Tallahassee, FL, 32306-4510, USA tam@math.fsu.edu
Abstract:The objective of this paper is to present an overview of recent advances in computational aeroacoustics (CAA). During the last decade, CAA has developed quite independent of computational fluid dynamics (CFD). There are computational issues that are unique to CAA and are, generally, not considered in CFD. In this paper, these issues are discussed and explained. In CAA, there is a great need to resolve high-frequency short waves with the minimum number of mesh points per wavelength. There is also a special need to minimize numerical dispersion and dissipation associated with wave propagation computation. All these have led to the development of large-stencil high-resolution schemes for CAA. A careful examination of dispersion and dissipation errors due to spatial and temporal discretization is provided. These errors are quantified and analyzed in wave number space through the use of Fourier-Laplace transforms. At this time, some of the original computational challenges to CAA have been resolved satisfactorily. A discussion of how some of these computational issues are resolved is presented. Several important CAA applications with interesting or unusual computational innovations are highlighted. Finally, a few of the most pressing outstanding computational challenges to CAA are elaborated.
Keywords:Computational aeroacoustics  High-resolution schemes  Wave number analysis  Dispersion and dissipation errors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号