首页 | 本学科首页   官方微博 | 高级检索  
     


Variable Selection Via Subtle Uprooting
Authors:Xiaogang Su
Abstract:This article proposes a variable selection method termed “subtle uprooting” for linear regression. In this proposal, variable selection is formulated into a single optimization problem by approximating cardinality involved in the information criterion with a smooth function. A technical maneuver is then employed to enforce sparsity of parameter estimates while maintaining smoothness of the objective function. To solve the resulting smooth nonconvex optimization problem, a modified Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm with established global and super-linear convergence is adopted. Both simulated experiments and an empirical example are provided for assessment and illustration. Supplementary materials for this article are available online.
Keywords:BFGS  Information criteria  Linear regression  Regularization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号