首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inference for SDE Models via Approximate Bayesian Computation
Authors:Umberto Picchini
Abstract:Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to model, for example, financial, neuronal, and population growth dynamics. However, inference for multidimensional SDE models is still very challenging, both computationally and theoretically. Approximate Bayesian computation (ABC) allows to perform Bayesian inference for models which are sufficiently complex that the likelihood function is either analytically unavailable or computationally prohibitive to evaluate. A computationally efficient ABC-MCMC algorithm is proposed, halving the running time in our simulations. Focus here is on the case where the SDE describes latent dynamics in state-space models; however, the methodology is not limited to the state-space framework. We consider simulation studies for a pharmacokinetics/pharmacodynamics model and for stochastic chemical reactions and we provide a Matlab package that implements our ABC-MCMC algorithm.
Keywords:Early–rejection MCMC  Likelihood-free inference  State-space model  Stochastic chemical reaction  Stochastic differential equation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号