首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical solution of axisymmetric multi-species compressible gas flow: towards improved circuit breaker simulation
Authors:A. Martin  M. Reggio  J.-Y. Trépanier
Affiliation:1. C.P. 6079, succ. Centre-ville, Montréal, Québec, Départment de Génie Mécanique, école Polytechnique de Montréal , Canada H3C 3A7 alexandre-2.martin@polymtl.ca;3. C.P. 6079, succ. Centre-ville, Montréal, Québec, Départment de Génie Mécanique, école Polytechnique de Montréal , Canada H3C 3A7
Abstract:Nozzle wall ablation caused by high-temperature electrical arcs is studied in the context of high voltage SF6 circuit breakers. The gases generated by the ablation mix with insulating gas, thereby modifying the thermodynamics and chemistry of the problem. To simulate these phenomena, an axisymmetric Euler equations model for multi-species flow at local thermodynamic equilibrium has been developed. The governing equations are solved using a finite-volume method based on Roe's flux-splitting scheme and a new procedure is proposed to obtain the mean values used in Roe's matrix involving multi-species. The change in the gas composition due to dissociation, ionisation and recombinations are taken into account by a dynamic coupling to a thermodynamic database. The formulation is appropriate for general equations of state. The scheme has been verified by comparisons with the analytical solution of a classic shock-tube problem. An experimental validation is presented involving the simulation of shock interactions with helium cylinders and bubbles in air. The scheme is also compared to experimental ablation results, as well as a previous version of the code. The model is then applied to a well controlled experimental arrangement with an arc inside a small Teflon® tube. Finally, a simulation with a model circuit breaker completes the study.
Keywords:circuit breaker  electric arc  multi-species flow  numerical simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号