Modifying cage structures in metal-organic polyhedral frameworks for H2 storage |
| |
Authors: | Yan Yong Blake Alexander J Lewis William Barnett Sarah A Dailly Anne Champness Neil R Schröder Martin |
| |
Affiliation: | School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK. |
| |
Abstract: | Three isostructural metal-organic polyhedral cage based frameworks (denoted NOTT-113, NOTT-114 and NOTT-115) with (3,24)-connected topology have been synthesised by combining hexacarboxylate isophthalate linkers with {Cu(2)(RCOO)(4)} paddlewheels. All three frameworks have the same cuboctahedral cage structure constructed from 24 isophthalates from the ligands and 12 {Cu(2)(RCOO)(4)} paddlewheel moieties. The frameworks differ only in the functionality of the central core of the hexacarboxylate ligands with trimethylphenyl, phenylamine and triphenylamine moieties in NOTT-113, NOTT-114 and NOTT-115, respectively. Exchange of pore solvent with acetone followed by heating affords the corresponding desolvated framework materials, which show high BET surface areas of 2970, 3424 and 3394 m(2) g(-1) for NOTT-113, NOTT-114 and NOTT-115, respectively. Desolvated NOTT-113 and NOTT-114 show high total H(2) adsorption capacities of 6.7 and 6.8 wt%, respectively, at 77 K and 60 bar. Desolvated NOTT-115 has a significantly higher total H(2) uptake of 7.5 wt% under the same conditions. Analysis of the heats of adsorption (Q(st)) for H(2) reveals that with a triphenylamine moiety in the cage wall, desolvated NOTT-115 shows the highest value of Q(st) for these three materials, indicating that functionalisation of the cage walls with more aromatic rings can enhance the H(2)/framework interactions. In contrast, measurement of Q(st) reveals that the amine-substituted trisalkynylbenzene core used in NOTT-114 gives a notably lower H(2)/framework binding energy. |
| |
Keywords: | carboxylates copper hydrogen storage metal–organic frameworks microporous material |
本文献已被 PubMed 等数据库收录! |
|