首页 | 本学科首页   官方微博 | 高级检索  
     检索      


SPECTROSCOPIC STUDIES OF CUTANEOUS PHOTOSENSITIZING AGENTS—X. A SPIN-TRAPPING AND DIRECT ELECTRON SPIN RESONANCE STUDY OF THE PHOTOCHEMICAL PATHWAYS OF DAUNOMYCIN AND ADRIAMYCIN
Authors:Anson S W  Li Colin F  Chignell
Institution:Laboratory of Molecular Biophysics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA
Abstract:Abstract— Irradiation of daunomycin (or adriamycin) and the spin trap 5,5-dimethyl-l-pyrroline-1-oxide (DMPO) at 490 nm in the presence or in the absence of air generated the hydroxyl radical adduct (DMPO-OH). The observed DMPO-OH signal was not affected by the addition of hydroxyl radical scavengers (ethanol, formate), suggesting that direct trapping of the hydroxyl radical was not involved. The DMPO-OH signal was insensitive to superoxide dismutase and catalase, which ruled out the possibility of superoxide or H2O2 involvement. These findings demonstrate that daunomycin (or adriamycin) does not generate hydroxyl radicals or superoxide radical anions when subjected to 490-nm excitation. However, when daunomycin (or adriamycin) was irradiated at 310 nm DMPO adducts derived from two carbon-centered radicals, superoxide and the hydroxyl radical were detected. The superoxide adduct of DMPO was abolished by the addition of SOD, providing unequivocal evidence for the generation of the superoxide anion radical. The daunomycin semiquinone radical, observed upon 310-nm irradiation of daunomycin in the absence of DMPO, appears to be the precursor of the superoxide radical anion. One of the carbon-centered radicals trapped by DMPO exhibited a unique set of hyperfine parameters and was identified as an acyl radical. This suggests that the known photochemical deacylation of daunomycin occurs via a homolytic cleavage mechanism. The free radicals generated photolytically from adriamycin and daunomycin may be involved in the etiology of the skin ulceration and inflammation caused by these drugs. A knowledge of the dependence of these photogenerated radicals on the wavelength of excitation may be important in the development of adriamycin and daunomycin for photodynamic therapy.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号