首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of hybrid organic–inorganic nanocomposite materials based on CdS nanocrystals for energy conversion applications
Authors:A M Laera  V Resta  M C Ferrara  M Schioppa  E Piscopiello  L Tapfer
Institution:(1) ENEA, UTTMATB, Centro Ricerche Brindisi, Strada Statale “Appia” km. 706, 72100 Brindisi, Italy;
Abstract:Efficient solar energy conversion is strongly related to the development of new materials with enhanced functional properties. In this context, a wide variety of inorganic, organic, or hybrid nanostructured materials have been investigated. In particular, in hybrid organic–inorganic nanocomposites are combined the convenient properties of organic polymers, such as easy manipulation and mechanical flexibility, and the unique size-dependent properties of nanocrystals (NCs). However, applications of hybrid nanocomposites in photovoltaic devices require a homogeneous and highly dense dispersion of NCs in polymer in order to guarantee not only an efficient charge separation, but also an efficient transport of the carriers to the electrodes without recombination. In previous works, we demonstrated that cadmium thiolate complexes are suitable precursors for the in situ synthesis of nanocrystalline CdS. Here, we show that the soluble Cd(SBz)2]2·(1-methyl imidazole) complex can be efficiently annealed in a conjugated polymer obtaining a nanocomposite with a regular and compact network of NCs. The proposed synthetic strategies require annealing temperatures well below 200 °C and short time for the thermal treatment, i.e., less than 30 min. We also show that the same complex can be used to synthesize CdS NCs in mesoporous TiO2. The adsorption of cadmium thiolate molecule in TiO2 matrix can be obtained by using chemical bath deposition technique and subsequent thermal annealing. The use of NCs, quantum dots, as sensitizers of TiO2 matrices represents a very promising alternative to common dye-sensitized solar cells and an interesting solution for heterogeneous photocatalysis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号