首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shape optimization and its extension to topological design based on isogeometric analysis
Authors:Yu-Deok Seo  Hyun-Jung Kim  Sung-Kie Youn
Institution:Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
Abstract:In most of structural optimization approaches, finite element method (FEM) has been employed for structural response analysis and sensitivity calculation. However, the approaches generally suffer certain drawbacks. In shape optimization, cumbersome parameterization of design domain is required and time consuming remeshing task is also necessary. In topology optimization, design results are generally restricted on the initial design space and additional post-processing is required for communication with CAD systems. These drawbacks are due to the use of different mathematical languages in design or geometric modeling and numerical analysis: spline basis functions are used in design and geometric modeling whereas Lagrangian and Hermitian polynomials in analysis. Isogeometric analysis is a very attractive and promising alternative to overcome the limitations resulting from the use of the conventional FEM in structural optimization. In isogeometric analysis, the same spline information such as control points and spline basis functions which represent geometries in CAD systems are also used in numerical analysis. Such unification of the mathematical languages in CAD, analysis and design optimization can resolve the issues mentioned above. In this work, structural shape optimization using isogeometric analysis is studied on 2D and shell problems. The proposed framework is extended to topology optimization using trimming techniques. New inner fronts are introduced by trimming spline curves in topology optimization. Trimmed surface analysis which was recently proposed to analyze arbitrary complex topology problems is employed for topology optimization. Some benchmarking problems in shape and topology optimization are treated using the proposed approach.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号