首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Contact analysis in presence of spherical inhomogeneities within a half-space
Authors:J Leroux  B Fulleringer  D Nélias
Institution:Université de Lyon, CNRS INSA-Lyon, LaMCoS UMR5259, F-69621, France
Abstract:This paper presents a fast method of solving contact problems when one of the mating bodies contains multiple heterogeneous inclusions, and numerical results are presented for soft or stiff inhomogeneities. The emphasis is put on the effects of spherical inclusions on the contact pressure distribution and subsurface stress field in an elastic half-space. The computing time and allocated memory are kept small, compared to the finite element method, by the use of analytical solution to account for the presence of inhomogeneities. Eshelby’s equivalent inclusion method is considered in the contact solver. An iterative process is implemented to determine the displacements and stress fields caused by the eigenstrains of all spherical inclusions. The proposed method can be seen as an enrichment technique for which the effect of heterogeneous inclusions is superimposed on the homogeneous solution in the contact algorithm. 3D and 2D Fast Fourier Transforms are utilized to improve the computational efficiency. Configurations such as stringer and cluster of spherical inclusions are analyzed. The effects of Young’s modulus, Poisson’s ratio, size and location of the inhomogeneities are also investigated. Numerical results show that the presence of inclusions in the vicinity of the contact surface could significantly changes the contact pressure distribution. From a numerical point of view the role of Poisson’s ratio is found very important. One of the findings is that a relatively ‘soft’ and nearly incompressible inclusion – for example a cavity filled with a liquid – can be more detrimental for the stress state within the matrix than a very hard inclusion with a classical Poisson’s ratio of 0.3.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号