首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fracture saturation and critical thickness in layered materials
Authors:HM Yin
Institution:Department of Civil Engineering and Engineering Mechanics, Columbia University, 610 Seeley W. Mudd, 500 West 120th Street, New York, NY 10027, USA
Abstract:Opening-mode fractures in layered materials are commonly found in a layer with uniform spacing that is nearly proportional to the thickness of the fractured layer. However, when fracture spacing reduces to a certain value, fracture density is saturated and no new fracture forms. If a loading condition is fixed, there exists a critical thickness of the layer, below which no fracture forms. This paper presents a three-layer model, containing a weak layer between two stronger layers, to interpret the fracture saturation and critical thickness of layered materials. Using elastic governing equations and a weak form stress boundary condition, a closed-form solution of elastic fields in the weak layer is derived and the energy release rate for opening-mode fracture is obtained. Interestingly, the normal stress between such fractures undergoes a transition from tensile to compressive with increasing applied tensile loading, which causes fracture saturation. Explicit expressions of critical fracture-spacing-to-layer-thickness ratio and critical thickness are derived for fracture saturation and fracture free conditions, respectively. Comparison with the existing numerical simulation results demonstrates the capability of this model. This explicit, analytical solution is useful to structural design and geosciences.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号