首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental and numerical investigation of fracture in a cast aluminium alloy
Authors:E Fagerholt  C Dørum  T Børvik  HI Laukli  OS Hopperstad
Institution:1. Structural Impact Laboratory (SIMLab), Centre for Research-based Innovation (CRI) and Department of Structural Engineering, Norwegian University of Science and Technology, Rich. Birkelands vei 1A, NO-7491 Trondheim, Norway;2. SINTEF Materials and Chemistry, Rich. Birkelands vei 2B, NO-7465 Trondheim, Norway;3. Norwegian Defence Estates Agency, Research and Development Department, PB 405, Sentrum, NO-0103 Oslo, Norway;4. Norsk Hydro ASA, Research and Technology Development, NO-6600 Sunndalsøra, Norway
Abstract:This paper describes an experimental and numerical investigation on the fracture behaviour of a cast AlSi9MgMn aluminium alloy. In the experiments, a modified Arcan test set-up was used to study mixed-mode fracture. During testing, the tension load and the displacement of the actuator of the test machine were recorded, simultaneously as a high-resolution digital camera was used to record a speckle-patterned surface of the specimen. The recorded images were post-processed using an in-house digital image correlation (DIC) software to obtain information of the displacement and strain fields in the specimen during the test. In addition, some newly implemented features in the DIC software allowed us to detect and follow the crack propagation in the material. The numerical calculations were carried out with a user-defined material model implemented in an explicit finite element code. In the model, the material behaviour is described by the classical J2 flow theory, while fracture was modelled by the Cockcroft–Latham criterion, assuming the fracture parameter to follow a modified weakest-link Weibull distribution. With the proposed probabilistic fracture modelling approach, the fracture parameter can be introduced as a random variable in the finite element simulations. Crack propagation was modelled by element erosion, and a non-local damage formulation was used to reduce mesh-size sensitivity. To reveal the effect of mesh density and meshing technique on the force–displacement curves and the crack propagation, several different meshes were used in the numerical simulations of the modified Arcan tests. The numerical results were finally compared to the experimental data and the agreement between the measured and predicted response was evaluated.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号