首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In-situ tensile testing of nano-scale specimens in SEM and TEM
Authors:M A Haque  M T A Saif
Institution:(1) Department of Mechanical & Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, USA
Abstract:We present a new experimental method for the mechanical characterization of freestanding thin films with thickness on the order of nanometers to micrometers. The method allows, for the first time, in-situ SEM and TEM observation of materials response under uniaxial tension, with measurements of both stresses and strains under a wide variety of environmental conditions such as temperature and humidity. The materials that can be tested include metals, dielectrics, and multi-layer composites that can be deposited/grown on a silicon substrate. The method involves lithography and bulk micromachining techniques to pattern the specimen of desired geometry, release the specimen from the substrate, and co-fabricate a force sensor with the specimen. Co-fabrication provides perfect alignment and gripping. The tensile testing fits an existing TEM straining stage, and a SEM stage. We demonstrate the proposed methodology by fabricating a 200 nm thick, 23.5 μm wide, and 185 μm long freestanding sputter deposited aluminum specimen. The testing was done in-situ inside an environmental SEM chamber. The stress-strain diagram of the specimen shows a linear elastic regime up to the yield stress σ y MPa, with an elastic modulusE=74.6 GPa.
Keywords:Mechanical properties  MEMS fabrication  tensile testing  thin films
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号