首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Separation via flotation, spectrophotometric speciation, and determination of vanadium(IV) in wastes of power stations.
Authors:Magda Ali Akl  Ahmed A El-Asmy  Wafaa M Yossef
Institution:Chemistry Department, Faculty of Science, Mansoura University, Egypt. magdaakl_59@hotmail.com
Abstract:1-(2-Hydroxy-4-methoxybenzophenone)-4-phenylthiosemicarbazone (HMBPT) was investigated as a new reagent for the flotation of vanadium(IV). At pH approximately 1.5, vanadium(IV) forms a 1:1 pale-violet complex with HMBPT in aqueous solution. An intense clear violet layer was formed after flotation, by adding an oleic acid (HOL) surfactant. The composition of the float was 1:1 V(IV)]:HMBPT]. A highly selective and sensitive spectrophotometric procedure was proposed for the determination of microamounts of V(IV) as its floated complex. The molar absorptivities of the V(IV)-HMBPT and V(IV)-HMBPT-HOL systems were 0.4 x 10(4) and 0.12 x 10(5) L mol(-1) cm(-1) at 560 nm, respectively. The formation constants of the species formed in the presence and absence of HOL were 4.6 x 10(7) and 8.7 x 10(5) L mol(-1), respectively. Beer's law was obeyed up to 1 x 10(-4) mol L(-1) in the aqueous layer as well as in the oleic acid layer. The HMBPT-V(IV) complexes formed in the aqueous solution and scum layer were characterized by elemental analysis, infrared and UV spectrophotometric studies. The mode of chelation between V(IV) and HMBPT is proposed to be due to a reaction between the protonated bidentate HMBPT ligand and V(IV) through the S=C and N=C groups. Interferences from various foreign ions were avoided by adding excess HMBPT and/or Na2S2O3 as a masking agent. The proposed flotation method was successfully applied to the analysis of V(IV) in synthetic mixtures, wastes of power stations, simulated samples and in real ores. The separation mechanism is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号