首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simultaneous nanoindentation and electron tunneling through alkanethiol self-assembled monolayers
Authors:Engelkes Vincent B  Frisbie C Daniel
Institution:Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, 55455, USA.
Abstract:Electrical tunnel junctions consisting of alkanethiol molecules self-assembled on Au-coated Si substrates and contacted with Au-coated atomic force microscopy tips were characterized under varying junction loads in a conducting-probe atomic force microscopy configuration. Junction load was cycled in the fashion of a standard nanoindentation experiment; however, junction conductance rather than probe depth was measured directly. The junction conductance data have been analyzed with typical contact mechanics (Derjaguin-Müller-Toporov) and tunneling equations to extract the monolayer modulus (approximately 50 GPa), the contact transmission (approximately 2 x 10(-6)), contact area, and probe depth as a function of load. The monolayers are shown to undergo significant plastic deformation under compression, yielding indentations approximately 7 Angstroms deep for maximum junction loads of approximately 50 nN. Comparison of mechanical properties for different chain lengths was also performed. The film modulus decreased with the number of carbons in the molecular chain for shorter-chain films. This trend abruptly reversed once 12 carbons were present along the backbone.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号