首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effective one-dimensional equation of motion for nuclear fission
Authors:M W Morsy  Fathia A E A Imam
Institution:(1) Mathematics and Theoretical Physics Department, Nuclear Research Center, Atomic Energy Establishment, Cairo, Egypt;(2) Mathematics Department, Faculty of Science, Helwan University, Cairo, Egypt
Abstract:An approach for describing the dynamics of nuclear fission in the framework of generalized quantum mechanics is discussed. The collective kinetic energy is assumed to be two dimensional, and the reduced mass is allowed to vary with the coordinates. The generalized calculus of variation is employed for minimizing the action after being properly quantized as required by Hamilton's principle, employing a curvilinear coordinate system. The corresponding Euler Lagrange equation is identified as the required generalized equation of motion. The proposed generalized two-dimensional equation of motion is separated into a vibrational eigenvalue equation and a set of coupled-channel one-dimensional equations which describe the translational motion, by exploiting the completeness of the vibrational eigenfunctions. Such a system of coupled equations can be decoupled by replacing the coupling matrix elements by a nonlocal interaction, which can be rendered local after employing the effective mass approximation. As a consequence this differential equation is provided with an effective mass, an effective potential barrier, and a differential boundary term which is responsible for restoring the self-adjointness of the kinetic energy differential operator.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号