Structural and magnetic properties of Mn(III) and Cu(II) tetranuclear azido polyoxometalate complexes: multifrequency high-field EPR spectroscopy of Cu4 clusters with S = 1 and S = 2 ground states |
| |
Authors: | Mialane Pierre Duboc Carole Marrot Jérôme Rivière Eric Dolbecq Anne Sécheresse Francis |
| |
Affiliation: | Laboratoire de Physico-Chimie des Solides Moléculaires, Institut Lavoisier, UMR 8637, Université de Versailles Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France). mialane@chimie.uvsq.fr |
| |
Abstract: | Two new azido-bridged polyoxometalate compounds were synthesized in acetonitrile/methanol media and their molecular structures have been determined by X-ray crystallography. The [[(gamma-SiW10O36)Mn2(OH)2(N3)(0.5)(H2O)(0.5)]2(mu-1,3-N3)](10-) (1 a) tetranuclear Mn(III) complex, in which an end-to-end N3- ligand acts as a linker between two [(gamma-SiW10O36)Mn2(OH)2]4- units, represents the first manganese-azido polyoxometalate. The magnetic properties have been studied considering the spin Hamiltonian H = -J1(S1S2+S1*S2*)-J2(S1S1*), showing that antiferromagnetic interactions between the paramagnetic centers (g = 1.98) occur both through the di-(mu-OH) bridge (J1 = -25.5 cm(-1)) and the mu-1,3-azido bridge (J2 = -19.6 cm(-1)). The [(gamma-SiW10O36)2Cu4(mu-1,1,1-N3)2(mu-1,1-N3)2]12- (2 a) tetranuclear Cu(II) complex consists of two [gamma-SiW10O36Cu2(N3)2]6- subunits connected through the two mu-1,1,1-azido ligands, the four paramagnetic centers forming a lozenge. The magnetic susceptibility data have been fitted. This reveals ferromagnetic interactions between the four Cu(II) centers, leading to an S=2 ground state (H = -J1(S1S2+S1*S2*)-J2(S2S2*), J1 = +294.5 cm(-1), J2 = +1.6 cm(-1), g = 2.085). The ferromagnetic coupling between the Cu(II) centers in each subunit is the strongest ever observed either in a polyoxometalate compound or in a diazido-bridged Cu(II) complex. Considering complex 2 a and the previously reported basal-basal di-(mu-1,1-N3)-bridged Cu(II) complexes in which the metallic centers are not connected by other magnetically coupling ligands, the linear correlation J1 = 2639.5-24.95*theta(av) between the theta(av) bridging angle and the J1 coupling parameter has been proposed. The electronic structure of complex 2 a has also been investigated by using multifrequency high-field electron paramagnetic resonance (HF-EPR) spectroscopy between 95 and 285 GHz. The spin Hamiltonian parameters of the S = 2 ground state (D = -0.135(2) cm(-1), E = -0.003(2) cm(-1), g(x) = 2.290(5), g(y) = 2.135(10), g(z) = 2.158(5)) as well as of the first excited spin state S = 1 (D = -0.960(4) cm(-1), E = -0.080(5) cm(-1), g(x) = 2.042(5), g(y) = 2.335(5), g(z) = 2.095(5)) have been determined, since the energy gap between these two spin states is very small (1.6 cm(-1)). |
| |
Keywords: | azides copper magnetic properties manganese polyoxometalates |
本文献已被 PubMed 等数据库收录! |
|