首页 | 本学科首页   官方微博 | 高级检索  
     


Versatile Neuromorphic Modulation and Biosensing based on N-type Small-molecule Organic Mixed Ionic-Electronic Conductors
Authors:Riping Liu  Xiuyuan Zhu  Jiayao Duan  Junxin Chen  Prof. Zhuang Xie  Chaoyue Chen  Prof. Xi Xie  Prof. Yanxi Zhang  Prof. Wan Yue
Affiliation:1. Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275 Guangzhou, P. R. China

These authors contributed equally to this work.;2. Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275 Guangzhou, P. R. China;3. Institute of Precision Medicine, The First Affiliated Hospital Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510006 Guangzhou, P. R. China;4. The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, 361005 Xiamen, Fujian, China

Abstract:The ion/chemical-based modulation feature of organic mixed ionic-electronic conductors (OMIECs) are critical to advancing next generation bio-integrated neuromorphic hardware. Despite achievements with polymeric OMIECs in organic electrochemical neuronal synapse (OENS). However, small molecule OMIECs based OENS has not yet been realized. Here, for the first time, we demonstrate an effective materials design concept of combining n-type fused all-acceptor small molecule OMIECs with subtle side chain optimization that enables robustly and flexibly modulating versatile synaptic behavior and sensing neurotransmitter in solid or aqueous electrolyte, operating in accumulation modes. By judicious tuning the ending side chains, the linear oligoether and butyl chain derivative gNR-Bu exhibits higher recognition accuracy for a model artificial neural network (ANN) simulation, higher steady conductance states and more outstanding ambient stability, which is superior to the state-of-art n-type OMIECs based OENS. These superior artificial synapse characteristics of gNR-Bu can be attributed to its higher crystallinity with stronger ion bonding capacities. More impressively, we unprecedentedly realized n-type small-molecule OMIECs based OENS as a neuromorphic biosensor enabling to respond synaptic communication signals of dopamine even at sub-μM level in aqueous electrolyte. This work may open a new path of small-molecule ion-electron conductors for next-generation ANN and bioelectronics.
Keywords:Bioelectronics  Ionic–Electronic Conductors  N-Type Small-Molecule  Organic Electrochemical Neuronal Synapse
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号