首页 | 本学科首页   官方微博 | 高级检索  
     


Interpreting the effects of temperature and solvent composition on separation of amino-acid racemates by chiral ligand-exchange chromatography
Authors:Sanaie Nooshafarin  Haynes Charles A
Affiliation:Michael Smith Laboratories, 2185 East Mall, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
Abstract:Routinely applied at both preparative and analytical scales, chiral ligand-exchange chromatography (CLEC) separates enantiomers capable of chelating a divalent transition-metal-ion through a pair of coordinating electronegative atoms. CLEC separation efficiencies are strongly dependent on column operating conditions, including temperature and mobile-phase solvent composition. Although previous empirical studies provide some useful guidelines for optimizing column operating conditions, the fundamental mechanisms underlying the unusually high sensitivity of CLEC performance to operating temperature and solvent composition remain poorly understood, limiting efforts to develop a comprehensive model for the technology. To address this problem, we report transport and chemical equilibria data for the separation of alpha-amino acids on a Nucleosil chiral-1 column presenting L-hydroxyproline as the immobilized ligand. Solute transport is found to be limited by pore diffusion at all column operating temperatures and solvent compositions, validating the existence of local equilibria throughout the column. Changes in separation performance are found to correlate with changes in chemical equilibria, emphasizing the need to carefully account for all speciation within the column when modeling CLEC and providing important fundamental data to achieve this goal. Each enantiomer participates in a large number of solution-phase complexes. As a result, the thermodynamic driving force for separation is unusually complex, allowing subtle changes in column operating conditions to mediate significant changes in speciation profiles and separation efficiency. A reaction-equilibria model accounting for all speciation within the CLEC column is proposed and used to estimate enantiomer partition coefficients and retention times.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号