首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and self‐assembly of stimuli‐responsive azobenzene‐containing diblock copolymers through microwave‐assisted RAFT polymerization
Authors:Po‐Chih Yang  Hsin‐Cheng Chen  Hua‐Wen Wen  Po‐I Wu
Affiliation:Department of Chemical Engineering and Materials Science, Yuan Ze University, , Taoyuan, Taiwan, Republic of China
Abstract:This article reports on studies regarding the photoisomerization kinetics and self‐assembly behaviors of two photoresponsive diblock copolymers, poly(4‐acetoxystyrene)‐block‐poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl acrylate] (poly(StO54b‐Cazo9) and poly(StO54b‐Cazo5)), which dissolved in a THF/H2O solution through two‐step reverse addition‐fragmentation transfer polymerization. We examined the effect of heating methods (i.e., conventional and microwave heating) on the polymerization kinetics of a 4‐acetoxystyrene‐based macrochain transfer agent (StO macro‐CTA). The kinetics studies on the homopolymerization of StO by using microwave heating demonstrated controllable characteristics with relatively narrow polydispersities at ~1.14. The diblock copolymers exhibited moderate thermal stability, with thermal decomposition temperatures greater than 343.3 °C, suggesting that the enhancement of the thermal stability was due to the incorporation of azobenzene segments into block copolymers. Poly(StO54b‐Cazo9) showed lower photoisomerization rate constants (kt = 0.039 s?1) compared with Cazo monomer (kt = 0.097 s?1). Micellar aggregates with a mean diameter of approximately 238.3 nm were formed by gradually adding water to the THF solution (water content = 10 vol %), and are shown in SEM and TEM images of the diblock copolymer. The results of this study contribute to the literature regarding the development of photoresponsive polymer materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3107–3117
Keywords:diblock copolymers  microwave heating  photoisomerization  reversible addition fragmentation chain transfer  self‐assembly
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号