首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of Electropolishing of Aluminum in a Deep Eutectic Medium and Acidic Electrolyte
Authors:Tarek M. Abdel-Fattah  J. Derek Loftis
Affiliation:1.Applied Research Center at Thomas Jefferson National Accelerator Facility and Department of Molecular Biology and Chemistry at Christopher Newport University, Newport News, VA 23606, USA;2.Department of Physical Sciences, Virginia Institute of Marine Science, College of William & Mary, Williamsburg, VA 23187, USA
Abstract:Research advances in electropolishing, with respect to the field of metalworking, have afforded significant improvements in the surface roughness and conductivity properties of aluminum polished surfaces in ways that machine polishing and simple chemical polishing cannot. The effects of a deep eutectic medium as an acid-free electrolyte were tested to determine the potential energy thresholds during electropolishing treatments based upon temperature, experiment duration, current, and voltage. Using voltammetry and chronoamperometry tests during electropolishing to supplement representative recordings via atomic force microscopy (AFM), surface morphology comparisons were performed regarding the electropolishing efficiency of phosphoric acid and acid-free ionic liquid treatments for aluminum. This eco-friendly solution produced polished surfaces superior to those surfaces treated with industry standard acid electrochemistry treatments of 1 M phosphoric acid. The roughness average of the as-received sample became 6.11 times smoother, improving from 159 nm to 26 nm when electropolished with the deep eutectic solvent. This result was accompanied by a mass loss of 0.039 g and a 7.2 µm change in step height along the edge of the electropolishing interface, whereas the acid treatment resulted in a slight improvement in surface roughness, becoming 1.63 times smoother with an average post-electropolishing roughness of 97.7 nm, yielding a mass loss of 0.0458 g and a step height of 8.1 µm.
Keywords:ionic liquid   electrochemical polishing   choline chloride   phosphoric acid   surface characterization   atomic force microscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号