首页 | 本学科首页   官方微博 | 高级检索  
     


In Silico Discovery of Antimicrobial Peptides as an Alternative to Control SARS-CoV-2
Authors:Yamil Liscano,Jose Oñ  ate-Garzó  n,Ivá  n Darí  o Ocampo-Ibá  ñ  ez
Affiliation:1.Research Group of Chemical and Biotechnology, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;2.Research Group of Microbiology, Industry and Environment, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
Abstract:A serious pandemic has been caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The interaction between spike surface viral protein (Sgp) and the angiotensin-converting enzyme 2 (ACE2) cellular receptor is essential to understand the SARS-CoV-2 infectivity and pathogenicity. Currently, no drugs are available to treat the infection caused by this coronavirus and the use of antimicrobial peptides (AMPs) may be a promising alternative therapeutic strategy to control SARS-CoV-2. In this study, we investigated the in silico interaction of AMPs with viral structural proteins and host cell receptors. We screened the antimicrobial peptide database (APD3) and selected 15 peptides based on their physicochemical and antiviral properties. The interactions of AMPs with Sgp and ACE2 were performed by docking analysis. The results revealed that two amphibian AMPs, caerin 1.6 and caerin 1.10, had the highest affinity for Sgp proteins while interaction with the ACE2 receptor was reduced. The effective AMPs interacted particularly with Arg995 located in the S2 subunits of Sgp, which is key subunit that plays an essential role in viral fusion and entry into the host cell through ACE2. Given these computational findings, new potentially effective AMPs with antiviral properties for SARS-CoV-2 were identified, but they need experimental validation for their therapeutic effectiveness.
Keywords:antimicrobial peptides   SARS-CoV-2   spike protein   angiotensin-converting enzyme 2
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号