首页 | 本学科首页   官方微博 | 高级检索  
     


Sequential bond energies of water to sodium glycine cation
Authors:S.J. Ye   R.M. Moision  P.B. Armentrout  
Affiliation:Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
Abstract:Absolute bond dissociation energies of water to sodium glycine cations and glycine to hydrated sodium cations are determined experimentally by competitive collision-induced dissociation (CID) of Na+Gly(H2O)x, x = 1–4, with xenon in a guided ion beam tandem mass spectrometer. The cross sections for CID are analyzed to account for unimolecular decay rates, internal energy of reactant ions, multiple ion–molecule collisions, and competition between reaction channels. Experimental results show that the binding energies of water and glycine to the complexes decrease monotonically with increasing number of water molecules. Ab initio calculations at four different levels show good agreement with the experimental bond energies of water to Na+Gly(H2O)x, x = 0–3, and glycine to Na+(H2O), whereas the bond energies of glycine to Na+(H2O)x, x = 2–4, are systematically higher than the experimental values. These discrepancies may provide some evidence that these Na+Gly(H2O)x complexes are trapped in excited state conformers. Both experimental and theoretical results indicate that the sodiated glycine complexes are in their nonzwitterionic forms when solvated by up to four water molecules. The primary binding site for Na+ changes from chelation at the amino nitrogen and carbonyl oxygen of glycine for x = 0 and 1 to binding at the C terminus of glycine for x = 2–4. The present characterization of the structures upon sequential hydration indicates that the stability of the zwitterionic form of amino acids in solution is a consequence of being able to solvate all charge centers.
Keywords:Alkali cations   Amino acids   Bond dissociation energies   Guided ion beam mass spectrometry   Hydration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号